:: 相关内容 ::
∴ 治疗高血压用药经验特色选析
∴ 治疗妇科肿瘤的经验和特色选析
∴ 腰椎间盘突出症的病因病理及治疗体会
∴ 阿莫西林/舒巴坦治疗细菌性感染临床疗效评价
∴ 脂肪肝的药物治疗
∴ 普罗布考对冠状动脉球囊损伤后管壁原癌基因c-myc表达的影响
∴ 气功外气对乙型肝炎病毒携带者血清作用的观察
∴ 硬膜外腔持续注射泵控制经膀胱术后膀胱挛缩硬膜外腔持
∴ 采用角度Dick系统恢复爆炸型脊椎骨折的椎体高度及椎管
∴ 初发脑梗塞病残程度与血糖、蛋白、血脂相关分析研究
你的位置:   首页 >> 文献材料>> 正文[关闭窗口]
抗菌药物的作用机制研究进展(三)

2006-09-08   http://www.adr-zj.net



  3 喹诺酮类药物

  喹诺酮类药物的作用机制主要是通过抑制DNA拓扑异构酶而抑制DNA的合成,从而发挥抑菌和杀菌作用。

  细菌DNA拓朴异构酶有I、II、III、IV,分两大类,第一类有拓朴异构酶I、III,主要参与DNA的松解,第二类包括拓朴异构酶II、IV,其中拓朴异构酶II又称DNA促旋酶,参与DNA超螺旋的形成,拓朴异构酶IV则参与细菌子代染色质分配到子代细菌中。但拓朴异构酶I和III对喹诺酮类药物不敏感,喹诺酮类药物的主要作用靶位是DNA促旋酶和拓朴异构酶IV。革兰氏阴性菌中DNA促旋酶是喹诺酮类的第一靶位,而革兰氏阻性菌中拓朴异构酶IV是第一靶位。

  DNA促旋酶通过暂时切断DNA双链,促进DNA复制转录过程中形成的超螺旋松解,或使松弛DNA链形成超螺旋空间构型。喹诺酮类药物通过嵌入断裂DNA链中间,形成DNA-拓朴异构酶-喹诺酮类三者复合物,阻止DNA拓朴异构变化,妨碍细菌DNA复制、转录、以达到杀菌目的。

  3.2 细菌对喹诺酮类抗菌药物产生耐药性的作用机制

  3.2.1 作用靶位的改变 1976年Gellert等发现DNA促旋酶,观察到萘啶酸能抑制大肠埃希氏菌DNA促旋酶,由萘啶酸耐药菌分离出的DNA促旋酶对萘啶酸表现出耐药性,据此确认喹诺酮类药物的作用靶位为DNA促旋酶。1990年加腾等发现大肠埃希氏菌拓朴异构酶IV能被喹诺酮类药物抑制,由喹诺酮耐药性MRSA克隆出的耐药基因之一的突变的拓扑异构酶IV基因,从而判明拓朴异构酶IV亦为喹诺酮类药物的靶位。

  编码组成DNA促旋酶的A亚单位和B亚单位及parC和parE亚单位组成拓朴异构酶IV的parC和parE的耐药性。在所有的突变型中,以gyra的突变为主。Akasaka等研究发现:在150例临床分离的铜录假单胞菌的耐药株中,gyrA的突变占79.3%(119/150)。主要为Thr-83→Ile,Ala;Asp→87→Asn,Gly, Thr。其中又以Thr83→Ile的突变型为多见,约74.7%(112/150),而其它的突变型罕见。在耐药菌株中,有20株在gyrA上有两个突变,以Thr-83和Asp-87的替换最常见有16株。GyrA双点突变仅发生在喹诺酮类高度耐药的菌株中,这是因为gryA上的83和87位的氨基酸在提供喹诺酮类的结合位点时具有重要的作用。

  而gyrB的突变株则较gyrA的突变少见。在13株分离的耐药菌株中,仅1株有gyrB的突变;在150例耐药菌中,仅发现27株细菌在gyrB存在突变,分别为Glu-468→Tyr(1)、Ser-468→Phe(3)、Glu-469→Val(1)、Glu-470→Asp(13)、Thr-437→Met(1)、Ala-477→Val(7)、Glu-459→Ang(1)。

  parC的突变主要为Ser-87→Leu,Trp。但值得注意的是所有存在parC改变的菌株上都已存在gyrA的改变。因此可以肯定的是parC突变的发生是在gyrA突变之后才发生的,在同时具有gyrA和parC突变的菌株中,以gyrA上的Thr-83→Ile和parC上的Ser-87→Leu类型为最多见。同样可以肯定的是,gyrA上的第二个点突变是发生在parC点突变之后。

  parE的突变型为Asp-419→Asn、Ala-425→Val。但在parE出现突变极其罕见(3/150)。

  除此之外,gyrA、gyrB、parC、parE基因上还出现一些不引起氨基酸改变的静止突变。它们的意义尚不清楚。

  在所有这些突变类型中,若II型拓朴异构酶上存在2个突变点(如gyrA和parC),它们引起对氟喹诺酮类的耐药远远大于只有一个突变点(如gyrA或gyrB上),前者是后者的3~4倍。同时没有发现突变仅出现在parC基因这一现象。这可能是因为DNA促旋酶是氟喹诺酮类的重要靶位,gyrA亚单位的改变可引起酶结构发生变化致空间位障,阻止喹诺酮类进入喹诺酮类作用区,或引起物理化学变化,干扰喹诺酮-酶-DNA的相互作用。这些结果显示gyrA上的突变的出现引起细菌对喹诺酮类发生耐药的主要机制,而parC突变只是进一步引起铜绿假单胞菌对喹诺酮的高度耐药。

  主动外排 同氨基糖苷类药物,细菌中同样存在能泵出喹诺酮类药物的外排系统,降低菌体内药物的浓度而出现细菌的耐药性。

  膜通透性改变 喹诺酮类药物与其它抗菌药物一样,依靠革兰氏阴性菌的外膜蛋白(OMP)和脂多糖的变异均可使细菌摄取药物的量减少而导致耐药。已发现多种喹诺酮耐药性外膜突变株如norB、norC、nfxC、nfxB和多种抗生素耐药的marA等。大肠埃希氏菌通透喹诺酮类药物的孔蛋白主要为OmpF和OmpC。在喹诺酮类药物作用下,发生变异而缺失OmpC。在喹诺酮类药物作用下,发生变异而缺失OmpF的菌株,药物不能进入细胞,出现耐药性,且常与四环素、氯霉素等抗生素交叉耐药。缺失OmpC的突变株敏感性变化较小。铜绿假单胞菌除上述变异外,还有OmpD2 、OmpG等变异,均可导致耐药性。

  结束语

  抗菌药物为人类的健康生存和发展作出了巨大的贡献。然而随后出现的细菌耐药性问题近年来已经发展到了非常严重地地步。深入了解药物的作用机制及其相关的耐药机制对研制新的有效的抗菌药物是非常必需的。可通过对目前已有的抗菌药物的化学结构进行改造,或合理的联合用药,对控制临床日益严重的感染疾病应有一定的帮助。